нуль-полугруппа - перевод на Английский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

нуль-полугруппа - перевод на Английский

АЛГЕБРАИЧЕСКАЯ СТРУКТУРА
Подполугруппа; Коммутативная полугруппа; Полугруппа с левым сокращением; Полугруппа с правым сокращением; Полугруппа с двусторонним сокращением; Регулярный элемент; Регулярная полугруппа; Вполне регулярный элемент; Вполне регулярная полугруппа; Абелева полугруппа

нуль-полугруппа      
f.
zero semigroup
полугруппа         
f.
semigroup
подполугруппа         
f.
subsemigroup

Определение

Полугруппа

одно из основных понятий современной алгебры. П. называется множество с определённой на нём операцией, подчинённой закону ассоциативности (См. Ассоциативность). Понятие П. есть обобщение понятия группы (См. Группа): из аксиом группы остаётся лишь одна; этим объясняется и термин "П.". Примеры П. в математике весьма многочисленны. Это различные множества чисел вместе с операцией сложения или умножения, замкнутые относительно рассматриваемой операции (т. е. содержащие вместе с любыми двумя своими элементами их сумму или, соответственно, произведение), П. матриц относительно умножения, П. функций относительно операции умножения, П. множеств относительно операции пересечения или объединения и т.д. Один из простейших примеров П. - множество всех натуральных чисел относительно сложения; эта П. является частью (подполугруппой) группы целых чисел по сложению или, как говорят, вложима в группу целых чисел. Следует отметить, что далеко не всякая П. вложима в группу.

В общей теории и некоторых приложениях важен следующий пример П. Пусть Х - произвольное множество и пусть на множестве Fx всех конечных последовательностей элементов из Х определена операция *, заданная формулой

(x1,..., xn) * (y1,..., ym) = (x1,..., xn, y1,..., ym).

Тогда Fx относительно операции * является П.; она называется свободной П. на множестве X. Всякая П. есть гомоморфный образ (см. Гомоморфизм) некоторой свободной П.

Всякая совокупность преобразований произвольного множества М, замкнутая относительно операции композиции (последовательного выполнения), будет П. относительно этой операции; такова, в частности, совокупность всех преобразований множества М, называется симметрической П. на множестве М. Многие важные совокупности преобразований оказываются П., причём часто они не являются группами. С другой стороны, всякая П. изоморфна (см. Изоморфизм) некоторой П. преобразований. Таким образом, именно понятие П. оказывается наиболее подходящим для изучения в самом общем виде преобразований. В большой степени через рассмотрение преобразований осуществляются связи теории П. с другими областями математики, такими, например, как современная дифференциальная геометрия, функциональный анализ, абстрактно-алгебраическая теория автоматов.

Первые исследования, посвященные П., относятся к 20-м гг. 20 в. К концу 50-х гг. теория П. сформировалась в самостоятельную ветвь современной алгебры и продолжает активно разрабатываться. Изучением абстрактных (т. е. не зависящих от конкретной природы элементов) свойств всевозможных ассоциативных операций занимается т. н. алгебраическая теория П. Одна из главных её задач состоит в описании строения различных П., их классификации. Наложение на полугрупповую операцию тех или иных дополнительных ограничений выделяет ряд важных типов П., среди которых т. н. вполне простые П., инверсные П. и др. Заметную часть общей теории составляет теория представлений П. преобразованиями и матрицами. Внесение в П. дополнительных структур, согласованных с полугрупповой операцией, выделяет особые разделы теории П., таких, как, например, теория топологических П.

Лит.: Сушкевич А. К., Теория обобщенных групп, Хар. - К., 1937; Ляпин Е. С., Полугруппы, М., 1960; Клиффорд А. Х., Престон Г. Б., Алгебраическая теория полугрупп, пер. с англ., т. 1-2, М., 1972; Hofmann К., Mostert P., Elements of compact semigroups, Columbus (Ohio), 1966.

Л. Н. Шеврин.

Википедия

Полугруппа

Полугруппа в общей алгебре — множество с заданной на нём ассоциативной бинарной операцией ( S , ) {\displaystyle (S,\cdot )} . Существуют разногласия по поводу того, нужно ли включать требование непустоты в определение полугруппы; отдельные авторы даже настаивают на необходимости наличия нейтрального элемента («единицы»). Однако более общепринятым является подход, согласно которому полугруппа не обязательно является непустой и не обязательно содержит нейтральный элемент. Полугруппа с нейтральным элементом называется моноидом; любую полугруппу S {\displaystyle S} , не содержащую нейтральный элемент, можно превратить в моноид, добавив к ней некоторый элемент e S {\displaystyle e\not \in S} и определив e s = s = s e   s S { e } ; {\displaystyle es=s=se\ \forall s\in S\cup \{e\};} полученный моноид обычно обозначается как S 1 {\displaystyle S^{1}} .

Примеры полугрупп: натуральные числа с операцией сложения, множество всех отображений множества в себя с операцией композиции, множество всех слов над некоторым алфавитом с операцией конкатенации. Любая группа является также и полугруппой; Идеал кольца всегда является полугруппой относительно операции умножения.

Как переводится нуль-полугруппа на Английский язык